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Sorting Algorithms Review

• Bubble Sort: O(n
2
)

• Insertion Sort: O(n
2
)

• Quick Sort: O(n log n)

• Heap Sort: O(n log n)

• Merge Sort: O(n log n)

• The best we can expect from a sequential sorting algorithm 
using p processors (if distributed evenly among the n 
elements to be sorted) is O(n log n) / p ~ O(log n).



Compare and Exchange Sorting Algorithms

• Form the basis of several, if not most, classical 
sequential sorting algorithms.

• Two numbers, say A and B, are compared between P0 
and P1. 

A 

MIN 

B 

MAX 

P0 P1 



Bubble Sort

• Generic example of a “bad” sorting 
algorithm.

• Algorithm:

• Compare neighboring elements.

• Swap if neighbor is out of order.

• Two nested loops.

• Stop when a whole pass 
completes without any swaps.

• Performance: 

• Worst: O(n
2
)

• Average: O(n
2
)

• Best: O(n)

0 1 2 3 4 5

3 8 0 6 51start:

0 1 2 3 4 5

3 0 6 5 81after pass 1:

0 1 2 3 4 5

0 3 5 6 81after pass 2:

0 1 2 3 4 5

1 3 5 6 80after pass 3:

0 1 2 3 4 5

1 3 5 6 80after pass 4:

fin.
"The bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some 
interesting theoretical problems."

- Donald Knuth, The Art of Computer Programming



Odd-Even Transposition Sort (also Brick Sort)

• Simple sorting algorithm that was introduced in 
1972 by Nico Habermann who originally 
developed it for parallel architectures (“Parallel 
Neighbor-Sort”).

• A comparison sorting algorithm that is related 
to bubble sort because it shares a similar 
approach.

• It compares all (odd-even) indexed pairs of 
adjacent elements in a list and switches them if 
they are out of order.  The next step repeats 
this process for (even-odd) indexed pairs and 
continues alternating until the list is sorted.

• The odd-even transposition sort makes use of a 
pipelining technique to ultimately run many 
phases of the bubble sort in parallel.

• The running time of this algorithm is O(n
2

)/p ~ 
O(n)



MergeSort

• Divide and conquer approach

• Characterized by dividing the problem into sub-problems of same form as larger 
problem. Further divisions into still smaller sub-problems, usually done by recursion.

• Recursive divide-and-conquer amenable to parallelization because separate processes 
can be used for divided parts.  Also usually data is naturally localized.

• Divide the n values to be sorted into two halves

• Recursively sort each half using MergeSort

• Base case n=1  no sorting required

• Merge the two halves (fundamental operation)

• O(n) operation



MergeSort

D
iv

id
e

C
onquer



Merge Operation

1 6 5 6 80 0 < 5

0

1 6 5 6 80 1 < 5

0 1

1 6 5 7 80 6 > 5

0 1 5

1 6 5 7 80 6 < 7

0 1 5 6

1 6 5 7 80 6 < 7

0 1 5 6 7 8

fin.

Now, do rest of second array..

O(n) running time because each element 
is considered (n-1 comparisons)



Parallel MergeSort

• Note: sorting two sub-arrays can be done in 
parallel.  Therefore two recursive calls can be 
called in parallel.

• The first division phase is essentially 
scattering the array across the processors.

• The second merge phase can be done in 
parallel with each processor using a 
sequential merge operation.

• The overall running time is O(n log n) / (log 
p) ~ O(n) but the unbalanced processor 
load and communication makes this 
algorithm inefficient than expected in 
practice.



Bitonic MergeSort

• Bitonic Mergesort was introduced by K.E. Batcher in 1968.

• A monotonic sequence is a list that is increasing in value.

• a0, a1, a2, ... an-2, an-1 where a0 < a1 < a2 < ... an-2 < an-1

• A bitonic sequence is defined as a list with two sequences, one increasing and 
another decreasing; no more than one local minimum and one local maximum. 
(endpoints (i.e., wraparound) must be considered):

• a0 < a1 < a2 < ... ai-1  < ai  > ai+1 ... > an-2 > an-1



Binary Split

• Divide the bitonic list into two equal halves. 

• Compare-Exchange each item on the first half (ai) with 
the corresponding item in the second half (ai+n/2).

• Result: Two bitonic sequences where the numbers in 
one sequence are all less than the numbers in the 
other sequence.



Sorting a Bitonic Sequence  
via Bitonic Splits

• Compare-and-exchange 
moves smaller numbers of 
each pair to left and larger 
numbers of pair to right. 

• Given a bitonic sequence, 
recursively performing binary 
splits will sort the list.

• Q: How many binary splits 
does it takes to sort a list?  
A: log n



Sorting an Arbitrary Sequence  
via Bitonic Splits

• To sort an arbitrary sequence, A) generate 
a bitonic sequence, then B) sort it using a 
series of bitonic splits.

• To generate a bitonic sequence:

• The unsorted sequences are merged 
into larger bitonic sequences, starting 
with pairs of adjacent numbers (Step 
1).

• By a compare-and-exchange operation, 
pairs of adjacent numbers formed into 
increasing sequences and decreasing 
sequences. Pairs form a bitonic 
sequence of twice the size of each 
original sequences. By repeating this 
process, bitonic sequences of larger 
and larger lengths obtained (Steps 2-3).

• Finally, a single bitonic sequence is sorted 
into a single increasing sequence (Steps 
4-6).

Unsorted Sequence

Sorted Sequence

Step No. 
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Processor No. 

000          001          010          011              100          101          110          111  
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L L L L H H H H 

L L H H L L H H 

L H L H L H L H 

Phase 1: (1)

Phase 2: (2-3)

Phase 3: (4-6)



Bitonic Sort Example
P0

000
P1

001
P2

010
P3

011
P4

100
P5

101
P6

110
P7

111

8 3 4 7 9 2 1 5

3 8 7 4 2 9 5 1

3 4 7 8 5 9 2 1

Step 1:

Step 2:

3 4 7 8 9 5 2 1Step 3:

Step 4: 3 4 2 1 9 5 7 8

2 1 3 4 7 5 9 8Step 5:

1 2 3 4 5 7 8 9Step 6:



Bitonic Sort Analysis

• In order to form a sorted sequence of length n from two 
sorted sequences of length n/2, there are log(n) phases 
required (e.g. the 3 = log(8) phase to form a monotonic 
sequence i from two bitonic sequences j and j'). The number 
of phases T(n) of the entire sorting network is given by:

• T(n)  =  log(n) + T(n/2)

• The solution of this recurrence equation is:

• Therefore, the overall run time of the algorithm is O(log(n)
2
).

T (n) = k
i=1

k

∑ =
k k +1( )
2

=
log(n) log(n) +1( )

2



Rank Sort

• Number of elements that are smaller than each selected 
element is counted. This count provides the position of the 
selected number, its “rank” in the sorted list. 

• First a[0] is read and compared with each of the other 
numbers, a[1] … a[n-1], recording the number of elements 
less than a[0].

• Suppose this number is x. This is the index of a[0] in the final 
sorted list.

• The number a[0] is copied into the final sorted list b[0] … 
b[n-1], at location b[x]. Actions repeated with the other 
numbers.

• Overall sequential time complexity of rank sort:  T(n)= O(n
2

)

// Serial Rank Sort 

for (i = 0; i < n; i++) { /* for each number */ 
   x = 0; 
   for (j = 0; j < n; j++) 
    /* count number less than it */ 
    if (a[i] > a[j])  
       x++; 
    /* copy number into correct place */  
    b[x] = a[i]; 
} 

// *This code needs to be fixed if  
// duplicates exist in the sequence.  



Parallel Rank Sort (P=n)

• One number is assigned to each processor. 

• Pi finds the final index of a[i] in O(n) steps. 

• Parallel time complexity, O(n), but that’s not all! 

__global__ void ranksort (int* a, int *b, int n) { 
  int i = blockIdx.x * blockDim.x + threadIdx.x 

  if (i < n) { 
    int x = 0; 
    /* count number less than it */ 
    for (int j = 0; j < n; j++) 
      if (a[i] > a[j]) 
        x++; 
      /* copy no. into correct place */ 
      b[x] = a[i]; 
    } 
  } 
}



Parallel Rank Sort (P=n2)

• Use n processors to find the rank of one element. 
The final count, i.e. rank of a[i] can be obtained using 
a global sum operation (e.g., reduction).

• Time complexity (for  P=n2): O(log n)



Bucket Sort

• For an array of N numbers, create 
M buckets (or bins) for the range 
of numbers in the array.

• Note in the example that there 
are two “2”s and two “1”s.

• Each of the elements are put into 
one of the M buckets.

• This is a stable sorting algorithm.
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Bucket Sort

• For an array of N numbers, create 
M buckets (or bins) for the range 
of numbers in the array.

• Note in the example that there 
are two “2”s and two “1”s.
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Bucket Sort

• For an array of N numbers, create 
M buckets (or bins) for the range 
of numbers in the array.

• Note in the example that there 
are two “2”s and two “1”s.

• Each of the elements are put into 
one of the M buckets.

• This is a stable sorting algorithm.
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Bucket Sort

• Sequential sorting time complexity: O(n + m) for n numbers divided into m parts.

• Placing into buckets is O(n).

• Moving from buckets to sorted list is O(n + m).

• Works well if the original numbers uniformly distributed across a known interval, 
say 0 to a-1.

• Simple approach to parallelization: assign one processor for each bucket.



Radix Sort
• A radix is the number taken to be the base (or root) of 

a system of numbers.  For example, for the binary 
system, the radix is 2, and for the decimal system, the 
radix is 10.

• Radix Sort is an integer sorting algorithm that uses 
bucket sort for each digit of an integer (keys) for a 
sequence of n integers starting from the least significant 
digit (LSD) to the most significant digit (MSD).  The 
algorithm dates back to a patent in 1887 by Herman 
Hollerinth on tabulating machines.

• Consider a sequence of n b-bit integers: x = xb-1...x1x0

• For a set of binary numbers, we represent each element 
as a b-tuple of integers in the range [0,1] and apply radix 
sort with n=2.

• Serial running time: O(kn
2

) where k is the number of 
digits.

• Parallel running time: O(kn
2

)/p ~ O(kn)



Radix Sort Example 1
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Radix Sort Example 2
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Radix Sort Parallel Implementation

• Two approaches:

• 1) Bucket sort each of the keys.

• 2) Rank sort each of the keys.



Review

• Odd-Even Transposition Sort

• Merge Sort

• Bitonic Sort

• Rank Sort

• Bucket Sort

• Radix Sort


