CSC 391/691: GPU Programming Fall 2015

Parallel Sorting Algorithms

Copyright © 2015 Samuel S. Cho

Sorting Algorithms Review

Bubble Sort: O(nz)
Insertion Sort: O(nz)
Quick Sort: O(n log n)
Heap Sort: O(n log n)

Merge Sort: O(n log n)

The best we can expect from a sequential sorting algorithm
using p processors (if distributed evenly among the n
elements to be sorted) is O(n log n) / p ~ O(log n).

Compare and Exchange Sorting Algorithms

® Form the basis of several, if not most, classical
sequential sorting algorithms.

® [wo numbers, say A and B, are compared between Py
and P,.

MIN MAX

Bubble Sort

® Generic example of a “bad” sorting 0 1 2 3 45
algorithm. start: | 1 |3 |8]0]6]|5
O I 2 3 4 5
® Algorithm:
afterpass I: | 1 |3 |0[6]|5]|8
® Compare neighboring elements.
® Swap if neighbor is out of order. 0 1 2 3 4 5
® Two nested loops. afterpass2: | | [0) 3]5]6]8
® Stop when a whole pass O I 2 3 4 5
completes without any swaps. sfrerpass3: |0 1 |35]6]8
O I 2 3 4 5
® Performance:
2 {01 |3]|5]6]8
e Worst: O(n) after pass 4:
2
® Average: O(n) ﬁn

® Best: O(n)

"The bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some
interesting theoretical problems."

- Donald Knuth, The Art of Computer Programming

Odd-Even Transposition Sort (also Brick Sort)

Simple sorting algorithm that was introduced in
1972 by Nico Habermann who originally
developed it for parallel architectures (“Parallel
Neighbor-Sort”).

A comparison sorting algorithm that is related
to bubble sort because it shares a similar
approach.

It compares all (odd-even) indexed pairs of
adjacent elements in a list and switches them if
they are out of order. The next step repeats
this process for (even-odd) indexed pairs and
continues alternating until the list is sorted.

The odd-even transposition sort makes use of a
pipelining technique to ultimately run many
phases of the bubble sort in parallel.

2

The running time of this algorithm is O(n)/p ~
O(n)

Time

(%))
N oo O W N = OF
o

Po Py
42
2 4
22— 4
2 4 <
2 1
1 2
1<—>2
1 2=

P> Ps3
7+—8
7 8 ~
7 — 1
-1 T =
4 3
3 4
34
-3 4 =

5+—1 3=—6
1 5 =3 6
8§ «—=3 5+—6
-3 8§<+—+5 6
7 5 8 6
5 7 6 8
5«—>6 7«38
=5 67 8

MergeSort

® Divide and conquer approach

® Characterized by dividing the problem into sub-problems of same form as larger
problem. Further divisions into still smaller sub-problems, usually done by recursion.

® Recursive divide-and-conquer amenable to parallelization because separate processes
can be used for divided parts. Also usually data is naturally localized.

® Divide the n values to be sorted into two halves

® Recursively sort each half using MergeSort

® Base case n=I| no sorting required

® Merge the two halves (fundamental operation)

® O(n) operation

Divide

MergeSort

o

sorted sequenc

2 2 3 4

A “y,
\\\“\\ Wi, '
O "0,
A Yy
R ™ - o
‘\‘\\‘ merge
o -
A
& %
R %,
o %,
o “, -
o “, o
‘\\‘ me rg C "1, \“‘
O s, o
N “ o

$ % &
~ -, ~
N 2 N
s 2 s
> A NJ
s . &
S A
§ MErge = S
> - - ~
5 % &
8 % S

initial sequence

Janbuo)

Merge Operation

0<5 51618
| <5 51618
Now. do rest of second array..
s =171 of1|6]| [6<7] |5]7
5 Ol1|5]6|7]8
O fin.
6<7 51718
O(n) running time because each element
516 is considered (n-1 comparisons)

Parallel MergeSort

Note: sorting two sub-arrays can be done in
parallel. Therefore two recursive calls can be
called in parallel.

The first division phase is essentially
scattering the array across the processors.

The second merge phase can be done in
parallel with each processor using a
sequential merge operation.

The overall running time is O(n log n) / (log
p) ~ O(n) but the unbalanced processor
load and communication makes this
algorithm inefficient than expected in
practice.

ivide
Ist

Merge

Unsorted list
2|17|8(5|11|3]|6
/ \
42|78 5/1(3|6
" 4 ¥ \
412117815 1]|3|6
IR A
42785 1(3]l6
AR
2/41(7|8]||11]|5]|3|6
' v \ :
214|718 113|5|6
\‘ /
2|13|4|(5|6|7|8
Sorted list

& B
\ ./\
BOOOOOHO
\ / \
2
(Py

Process allocation

Bitonic MergeSort

® Bitonic Mergesort was introduced by K.E. Batcher in 1968.

® A monotonic sequence is a list that is increasing in value.
® a,3,,3,,..2 53, Wherea; <a, <a,<..a ,<a

® A bitonic sequence is defined as a list with two sequences, one increasing and
another decreasing; no more than one local minimum and one local maximum.
(endpoints (i.e., wraparound) must be considered):

® 3,<23, <23 <..3, <3 >3, ..~2,,> 23,

Value / . \ /

o

99, 81,82,83, ... 852 85 g, 81, 82,83, ... 8584

(a) Single maximum (b) Single maximum and single minimum

Binary Split

® Divide the bitonic list into two equal halves.

® Compare-Exchange each item on the first half (a;) with
the corresponding item in the second half (aj+n/2).

Bitonic sequence

A

o
o

2

%%

—

3 5§ 8 9

7 4
Compare and ‘\ \ ‘\\/‘ Y,

exchange =

- | > o

Bitonic sequence Bitonic sequence

® Result: Two bitonic sequences where the numbers in
one sequence are all less than the numbers in the
other sequence.

Sorting a Bitonic Sequence
via Bitonic Splits

® Compare-and-exchange
moves smaller numbers of
each pair to left and larger
numbers of pair to right.

® Given a bitonic sequence,
recursively performing binary
splits will sort the list.

® Q:How many binary splits
does it takes to sort a list?
A:logn

Bltonlc sequence
Compare and ‘\ W/‘
exchange \\\\\
\ ‘\Z " \ &Z "

4 9
Aol oA A4 Ao A4
U U
1 2 3 4 5 7 8 9
Sorted list

Sorting an Arbitrary Sequence
via Bitonic Splits

® To sort an arbitrary sequence,A) generate Step No. Processor No,
a bitonic sequence, then B) sort it using a 000 001 010 011 100 101 110 111
series of bitonic splits.
P ! loin] [apqc] [cHu] [afAL]

2 | L

:

s oW O @ EE

® The unsorted sequences are merged |

® To generate a bitonic sequence:

[I]
into larger bitonic sequences, starting 4 o] [o] | L || L | s [u] | H | | H|
with pairs of adjacent numbers (Step |
). 5 |L}—]|L}-II-{H|I—{H| |L}—]|L}-‘I-{H|[—{H|

o By.a comp:are-and-exchange opera.tlon, " (L]
pairs of adjacent numbers formed into
increasing sequences and decreasing Unsorted Sequence

sequences. Pairs form a bitonic
sequence of twice the size of each ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

O{a] [0 [T

original sequences. By repeating this Phase 1: (1) / \ / \
v

process, bitonic sequences of larger ¢ ¢ ¢

and larger lengths obtained (Steps 2-3).
Phase 2: (2-3) / \

® Finally, a single bitonic sequence is sorted ¢ ¢

into a single increasing sequence (Steps —> |
4-6). 8 &3¢ (Step Phase 3: (4-6)

Sorted Sequence

Bitonic Sort Example

8 3 4 7 9 2 I 5
)) t)))))
— ~— — —
Step I: 3 8 7 4 2 9 5 I
1 4) 4) p 1 i}
Step 2: 3 4 7 8 5 9 2 |
) T I)) T) ?
Step 3: 3 ‘)8 9 I
Step 4: 3 2 9 7 8
) A) A t T%)
Step 5: 2 I 3 4 7 5 9 8
))))))))
Step 6: I 2 3 4 5 7 8 9

Bitonic Sort Analysis

In order to form a sorted sequence of length n from two
sorted sequences of length n/2, there are log(n) phases
required (e.g. the 3 = log(8) phase to form a monotonic
sequence i from two bitonic sequences j and j'). The number
of phases T(n) of the entire sorting network is given by:

T(n) = log(n) + T(n/2)
The solution of this recurrence equation is:
k(k+1) log(n)(log(n) +1)
T
(n) = E >

Therefore, the overall run time of the algorithm is O(Iog(n)z).

Rank Sort

Number of elements that are smaller than each selected
element is counted. This count provides the position of the
selected number, its “rank’ in the sorted list.

First a[0] is read and compared with each of the other
numbers, a[l] ... a[n-1], recording the number of elements
less than a[0].

Suppose this number is x.This is the index of a[0] in the final
sorted list.

The number a[0] is copied into the final sorted list b[0] ...
b[n-1], at location b[x].Actions repeated with the other
numbers.

2
Overall sequential time complexity of rank sort: T(n)= O(n)

// Serial Rank Sort

for (i
x:
for

/*
if

/*

= 0; i < n; i++) { /* for each number */
0;

(3 =0;, j < n; j++)

count number less than it */

(a[i] > a[3])

xX++;

copy number into correct place */

b[x] = a[i];

}

// *This code needs to be fixed if
// duplicates exist in the sequence.

Parallel Rank Sort (P=n)

® One number is assigned to each processor.

® P, finds the final index of a[i] in O(n) steps.

}

global void ranksort (int* a, int *b, int n) {
int i = blockIdx.x * blockDim.x + threadIdx.x

if (i < n) {
int x = 0;
/* count number less than it */
for (int j = 0; j < n; j++)
if (a[i] > aljl)

X++;
/* copy no. into correct place */
b[x] = a[i];

}
}

® Parallel time complexity, O(n), but that’s not all!

Parallel Rank Sort (P=n?)

® Use n processors to find the rank of one element.
The final count, i.e. rank of a[i] can be obtained using
a global sum operation (e.g., reduction).

e Time complexity (for P=n?):O(log n)

ali] a[0] a[fi] a[1] ali] a[2] a[i] a[3]

Compare
0/1

0/1

0/1/2

Tree

Add
0/1/2/3/4

Bucket Sort

For an array of N numbers, create
M buckets (or bins) for the range
of numbers in the array.

Note in the example that there

are two “2”’s and two “|’’s.

!

Each of the elements are put into

|

one of the M buckets.

!

This is a stable sorting algorithm.

Bucket Sort

For an array of N numbers, create
M buckets (or bins) for the range
of numbers in the array.

Note in the example that there

are two “2”’s and two “|’’s.

|

Each of the elements are put into

|

one of the M buckets.

This is a stable sorting algorithm.

Bucket Sort

For an array of N numbers, create
M buckets (or bins) for the range
of numbers in the array.

Note in the example that there
are two “2”s and two “[’’s.

Each of the elements are put into
one of the M buckets.

This is a stable sorting algorithm.

v 3

|

!

Bucket Sort

Unsorted numbers

Buckets 1 f 1 | 1 Je e e o o o

Sort
contents
of buckets

Merge lists

Sorted numbers

® Sequential sorting time complexity: O(n + m) for n numbers divided into m parts.
® Placing into buckets is O(n).

® Moving from buckets to sorted list is O(n + m).

® Works well if the original numbers uniformly distributed across a known interval,
say 0 to a-I.

® Simple approach to parallelization: assign one processor for each bucket.

Radix Sort

A radix is the number taken to be the base (or root) of
a system of numbers. For example, for the binary
system, the radix is 2, and for the decimal system, the
radix is 10.

Radix Sort is an integer sorting algorithm that uses
bucket sort for each digit of an integer (keys) for a
sequence of n integers starting from the least significant
digit (LSD) to the most significant digit (MSD). The
algorithm dates back to a patent in 1887 by Herman
Hollerinth on tabulating machines.

Consider a sequence of n b-bit integers: x = x, |...x,X,

For a set of binary numbers, we represent each element
as a b-tuple of integers in the range [0, 1] and apply radix
sort with n=2.

2
Serial running time: O(kn) where k is the number of
digits. ,
Parallel running time: O(kn)/p ~ O(kn)

Radix Sort Example |

[000l]

[0010]

[1101]

[1110]]

[1001]

[o001]

[1101]
[1110]]

[IOOIJ

[IIOIJ

(0010 |

[IIIOJ

[0010 |

[IIIOJ

[101]
[000! |

[1001 |

[0010 |

[110 J»[1001 J»[000]»[oomj»[001 |

[0001]

[1110]

~ [HeHeHHeHeHEH
o UEHEEH I UE
I mIaiaininininis
WIS
3 EHeHaHHeHHHE
x JUEUUEE
&

EHeHeHeHeHHHe

S EEE

Radix Sort Parallel Implementation

® [wo approaches:

® |) Bucket sort each of the keys.

® 7) Rank sort each of the keys.

Review

Odd-Even Transposition Sort
Merge Sort

Bitonic Sort

Rank Sort

Bucket Sort

Radix Sort

